Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats.

نویسندگان

  • Shumei Meng
  • L Jackson Roberts
  • Garrick W Cason
  • Travis S Curry
  • R Davis Manning
چکیده

The roles of oxidative stress and renal superoxide dismutase (SOD) levels and their association with renal damage were studied in Dahl salt-sensitive (S) and salt-resistant (R)/Rapp strain rats during changes in Na intake. After 3 wk of a high (8%)-Na diet in S rats, renal medullary Cu/Zn SOD was 56% lower and Mn SOD was 81% lower than in R high Na-fed rats. After 1, 2, and 3 wk of high Na, urinary excretion of F(2)-isoprostanes, an index of oxidative stress, was significantly greater in S rats compared with R rats. Plasma F(2)-isoprostane concentration increased in the 2-wk S high Na-fed group. After 3 wk, renal cortical and medullary superoxide production was significantly increased in Dahl S rats on high Na intake, and urinary protein excretion, an index of renal damage, was 273 +/- 32 mg/d in S high Na-fed rats and 35 +/- 4 mg/d in R high Na-fed rats (P < 0.05). In conclusion, salt-sensitive hypertension in the S rat is accompanied by marked decreases in renal medullary SOD and greater renal oxidative stress and renal damage than in R rats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension.

Central sympathoexcitation is involved in the pathogenesis of salt-sensitive hypertension. We have suggested that oxidative stress in the brain modulates the sympathetic regulation of arterial pressure. Thus, we investigated whether oxidative stress could mediate central sympathoexcitation in salt-sensitive hypertension. Five- to 6-week-old male Dahl salt-sensitive rats and salt-resistant rats ...

متن کامل

Hydrogen Sulfide Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats

The study aimed to examine the protective effect of hydrogen sulfide (H2S) on high-salt-induced oxidative stress and myocardial hypertrophy in salt-sensitive (Dahl) rats. Thirty male Dahl rats and 40 SD rats were included in the study. They were randomly divided into Dahl control (Dahl + NS), Dahl high salt (Dahl + HS), Dahl + HS + NaHS, SD + NS, SD + HS, SD + HS + NaHS, and SD + HS + hydroxyla...

متن کامل

Oxidative stress in Dahl salt-sensitive hypertension.

The role of oxidative stress in the long-term regulation of arterial pressure, renal hemodynamics, and renal damage was studied in Dahl salt-sensitive rats. Twenty-eight Dahl S/Rapp strain rats, equipped with indwelling arterial and venous catheters, were subjected to a 3-week intravenous infusion of either low Na (0.9 mmol/d) or high Na (20.6 mmol/d) or the superoxide dismutase mimetic, 4-hydr...

متن کامل

NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats.

Dahl salt-sensitive (SS) rats exhibit increased renal medullary oxidative stress and blood pressure salt-sensitivity compared with consomic, salt-resistant SS-13BN rats, despite highly similar genetic backgrounds. The present study examined potential sources of renal medullary superoxide in prehypertensive SS rats fed a 0.4% NaCl diet by assessing activity and protein levels of superoxide produ...

متن کامل

Oxidative stress and antioxidant treatment in hypertension and the associated renal damage.

Reactive oxygen species (ROS) are elevated in humans with hypertension many of which develop end-stage renal disease (ESRD), and antioxidant capacity is decreased. About one-half of essential hypertensives have a salt-sensitive type of hypertension, and the amount of renal damage that occurs in salt-sensitive hypertensives greatly exceeds that of non-salt-sensitive hypertensives. Antioxidant th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 283 3  شماره 

صفحات  -

تاریخ انتشار 2002